Here’s a practical, up-to-date comparison of the main Python options for extracting tables from PDFs—what they’re best at, trade-offs, and quickstart code.
| Library | Best for | Accuracy | Speed | Setup friction | Notes |
|---|---|---|---|---|---|
| Camelot | Digital PDFs with lines or consistent spacing | High (lattice); good (stream) | Fast | Pure Python | Two modes: lattice (uses ruling lines) and stream (white-space). Exports DataFrame/CSV easily. (Camelot) |
| tabula-py | Bulk extraction from consistent PDFs | High on “regular” tables | Very fast | Needs Java (tabula-java) | Simple API (read_pdf, convert_into), good for pipelines. (Tabula-Py) |
| pdfplumber | Tricky layouts & fine control | Good→High (with tuning) | Medium | Pure Python | Exposes characters/lines/rects; you can tune table settings per page. (GitHub) |
| OCRmyPDF (pre-step) | Scanned/image PDFs | — | Medium | External CLI | Adds searchable text layer; then use one of the above. (OCRmyPDF, GitHub) |
| Table Transformer (TaTR) | Complex or image-only tables | High (best on hard layouts) | Slowest | ML model + deps | Detects table regions & structure; works on PDFs/images. (GitHub) |
import camelot
tables = camelot.read_pdf("file.pdf", pages="1-3", flavor="lattice") # or flavor="stream"
df = tables[0].df
tables.export("out.csv", f="csv")Camelot’s lattice mode relies on ruling lines; use stream for whitespace-based tables. (Camelot)
import tabula
dfs = tabula.read_pdf("file.pdf", pages="all", multiple_tables=True) # returns list of DataFrames
tabula.convert_into("file.pdf", "out.csv", output_format="csv", pages="all")Requires Java because it wraps tabula-java. Great for batch jobs. (Tabula-Py)
import pdfplumber, pandas as pd
rows = []
with pdfplumber.open("file.pdf") as pdf:
page = pdf.pages[0]
table = page.extract_table(
table_settings={"vertical_strategy":"lines", "horizontal_strategy":"lines"}
)
df = pd.DataFrame(table[1:], columns=table[0])table_settings lets you adapt to non-standard layouts; you can also use edge/line tolerance strategies. (GitHub)
ocrmypdf --deskew --clean input_scanned.pdf input_searchable.pdfThen run Camelot/tabula/pdfplumber on input_searchable.pdf. (OCRmyPDF, GitHub)
layoutparser/transformers + TaTR weights → detect tables → reconstruct structure → export CSV/DF. Best on complex images and messy scans; heavier to set up and slower. (GitHub)area or templates for consistent cropping; great for reports where tables live in fixed regions. (Tabula-Py)If you share a representative PDF (one digital, one scanned), I can run a quick bake-off with 2–3 approaches and give you tuned code per page type.
Sujets populaires dans ce scrapbook :
Autres scraps de "k1ito-tech"
いい選択です 👍 diskcache は ディスクにキャッシュを保存できるライブラリ で、メモリを圧迫せずに大量のデータをキャッシュできます。しかも API がシンプルで、Webアプリや機械学習の前処理結果キャッシュなどにもよく使われます。 --- インストール bash pip inst...
If by “MCP server” you mean a server implementing the Model Context Protocol (MCP) to allow LLMs / AI agents to interact with external tools/data sour...
[2508.20722] rStar2-Agent: Agentic Reasoning Technical Report URL: https://www.arxiv.org/abs/2508.20722 Captured: 2025/9/6 17:39:22 --- Computer ...
Daytona Sandbox:開発環境の新たな可能性 Daytona Sandboxとは Daytona Sandboxは、開発者がクラウド上で瞬時に開発環境を構築・共有できる革新的なプラットフォームです。従来のローカル開発環境の制約を取り払い、どこからでもアクセス可能な統一された開発体験...
step-by-step E2B example in Python that shows stateful execution, installing packages, uploading a file, and doing a quick SQLite query—all inside a s...
Agentic workflow patterns integrate modular software agents with structured large language model (LLM) workflows, enabling autonomous reasoning and ac...
Envie de créer vos propres articles ?
Get Started