LoginJoin GenScrap
Back to Public Gallery

a detailed comparison between AWS EC2 G6, G6e, and G6f instance families, based on the most recent official specifications:


###Overview Table

FeatureG6G6e (latest)G6f (fractional GPU variant of G6)
GPU TypeNVIDIA L4 Tensor CoreNVIDIA L40S Tensor CoreNVIDIA L4 Tensor Core (fractionalized)
GPU Memory24 GiB per GPU; fractional as low as 3 GiB48 GiB per GPU3 GiB (1/8 GPU) up to full GPU (24 GiB)
CPU3rd-gen AMD EPYC 7R133rd-gen AMD EPYC 7R13Same as G6
vCPU / RAM RangeUp to 192 vCPU, 768 GiB RAMUp to 192 vCPU, 1,536 GiB RAMSimilar to G6, tailored for fractional GPUs
Network BandwidthUp to 100 GbpsUp to 400 GbpsUp to 100 Gbps
Local NVMe StorageUp to ~7.52 TBUp to ~7.6 TBSame capabilities as G6
Performance Advantages~2× inference & graphics boost vs G4dnUp to 2.5× better than G5; high memory bandwidthSame as G6; fractional for cost optimizations
Primary Use CasesML inference, real-time graphics/renderingLarge LLM inference, generative AI, spatial computingLightweight inference, graphics cost-effective

###Key Highlights by Family

G6

G6e

  • The latest iteration, leveraging NVIDIA L40S Tensor Core GPUs with 48 GiB memory per GPU and up to 8 GPUs per instance.(Amazon Web Services, Inc.)
  • Provides up to 192 vCPUs, 400 Gbps networking, 1.536 TB system memory, and ~7.6 TB NVMe storage.(Amazon Web Services, Inc.)
  • Offers up to 2.5× better performance compared to G5 instances and is targeted at large-scale inference, generative models, and spatial computing.(Amazon Web Services, Inc.)

G6f

  • Essentially a fractional GPU variant of G6: same NVIDIA L4 GPUs, but size options include fractions like 1/8, 1/4, etc.(Amazon Web Services, Inc.)
  • Ideal for workloads that don’t need full GPU power and aim for cost efficiency.(Amazon Web Services, Inc.)
  • Same CPU, memory, and bandwidth capabilities as G6 fully accompanied options.(Vantage)

###Summary Insights

  • Choose G6 for balanced GPU compute & graphics workloads, especially if you're working with smaller ML inference tasks or real-time rendering, and want flexibility in scaling down GPU usage.

  • Opt for G6e when you need maximum GPU memory and bandwidth, e.g., running large LLM inference or generative AI tasks, or spatial computing that benefits from higher throughput and memory.

  • Use G6f when you're optimizing costs and your workload can function with fractional GPU capacity—great for light inference workloads with lower memory requirements.

Would you like a size-level breakdown (e.g., xlarge, 12xlarge) or price estimates in your region? Happy to dig deeper!

About this Scrapbook
See Also

Other scraps from "k1ito-tech"

diskcache

いい選択です 👍 diskcache は ディスクにキャッシュを保存できるライブラリ で、メモリを圧迫せずに大量のデータをキャッシュできます。しかも API がシンプルで、Webアプリや機械学習の前処理結果キャッシュなどにもよく使われます。 --- インストール bash pip inst...

about 1 month ago
#python caching#diskcache+3

Best mcp server development sdk?

If by “MCP server” you mean a server implementing the Model Context Protocol (MCP) to allow LLMs / AI agents to interact with external tools/data sour...

about 1 month ago
#model context protocol#mcp sdk+3

# [2508.20722] rStar2-Agent: Agentic Reasoning Technical Report

[2508.20722] rStar2-Agent: Agentic Reasoning Technical Report URL: https://www.arxiv.org/abs/2508.20722 Captured: 2025/9/6 17:39:22 --- Computer ...

about 2 months ago
#agentic reinforcement learning#large language models+3

Daytona Sandbox:開発環境の新たな可能性

Daytona Sandbox:開発環境の新たな可能性 Daytona Sandboxとは Daytona Sandboxは、開発者がクラウド上で瞬時に開発環境を構築・共有できる革新的なプラットフォームです。従来のローカル開発環境の制約を取り払い、どこからでもアクセス可能な統一された開発体験...

about 2 months ago
#daytona#sandbox+3

E2B example in Python

step-by-step E2B example in Python that shows stateful execution, installing packages, uploading a file, and doing a quick SQLite query—all inside a s...

about 2 months ago
#e2b#python+3

# Agentic workflow patterns - AWS Prescriptive Guidance

Agentic workflow patterns integrate modular software agents with structured large language model (LLM) workflows, enabling autonomous reasoning and ac...

2 months ago
#aws#agentic ai+3

Want to create your own articles?

Get Started