a detailed comparison between AWS EC2 G6, G6e, and G6f instance families, based on the most recent official specifications:
| Feature | G6 | G6e (latest) | G6f (fractional GPU variant of G6) |
|---|---|---|---|
| GPU Type | NVIDIA L4 Tensor Core | NVIDIA L40S Tensor Core | NVIDIA L4 Tensor Core (fractionalized) |
| GPU Memory | 24 GiB per GPU; fractional as low as 3 GiB | 48 GiB per GPU | 3 GiB (1/8 GPU) up to full GPU (24 GiB) |
| CPU | 3rd-gen AMD EPYC 7R13 | 3rd-gen AMD EPYC 7R13 | Same as G6 |
| vCPU / RAM Range | Up to 192 vCPU, 768 GiB RAM | Up to 192 vCPU, 1,536 GiB RAM | Similar to G6, tailored for fractional GPUs |
| Network Bandwidth | Up to 100 Gbps | Up to 400 Gbps | Up to 100 Gbps |
| Local NVMe Storage | Up to ~7.52 TB | Up to ~7.6 TB | Same capabilities as G6 |
| Performance Advantages | ~2× inference & graphics boost vs G4dn | Up to 2.5× better than G5; high memory bandwidth | Same as G6; fractional for cost optimizations |
| Primary Use Cases | ML inference, real-time graphics/rendering | Large LLM inference, generative AI, spatial computing | Lightweight inference, graphics cost-effective |
Choose G6 for balanced GPU compute & graphics workloads, especially if you're working with smaller ML inference tasks or real-time rendering, and want flexibility in scaling down GPU usage.
Opt for G6e when you need maximum GPU memory and bandwidth, e.g., running large LLM inference or generative AI tasks, or spatial computing that benefits from higher throughput and memory.
Use G6f when you're optimizing costs and your workload can function with fractional GPU capacity—great for light inference workloads with lower memory requirements.
Would you like a size-level breakdown (e.g., xlarge, 12xlarge) or price estimates in your region? Happy to dig deeper!
Popular topics in this scrapbook:
Other scraps from "k1ito-tech"
いい選択です 👍 diskcache は ディスクにキャッシュを保存できるライブラリ で、メモリを圧迫せずに大量のデータをキャッシュできます。しかも API がシンプルで、Webアプリや機械学習の前処理結果キャッシュなどにもよく使われます。 --- インストール bash pip inst...
If by “MCP server” you mean a server implementing the Model Context Protocol (MCP) to allow LLMs / AI agents to interact with external tools/data sour...
[2508.20722] rStar2-Agent: Agentic Reasoning Technical Report URL: https://www.arxiv.org/abs/2508.20722 Captured: 2025/9/6 17:39:22 --- Computer ...
Daytona Sandbox:開発環境の新たな可能性 Daytona Sandboxとは Daytona Sandboxは、開発者がクラウド上で瞬時に開発環境を構築・共有できる革新的なプラットフォームです。従来のローカル開発環境の制約を取り払い、どこからでもアクセス可能な統一された開発体験...
step-by-step E2B example in Python that shows stateful execution, installing packages, uploading a file, and doing a quick SQLite query—all inside a s...
Agentic workflow patterns integrate modular software agents with structured large language model (LLM) workflows, enabling autonomous reasoning and ac...
Want to create your own articles?
Get Started